Background: Resveratrol is a polyphenol chemical that naturally occurs in many plant-based dietary products, most notably, red wine. Discovered in 1939, widespread interest in the potential health benefits of resveratrol emerged in the 1970s in response to epidemiological data on the cardioprotective effects of wine. Objective: To explore the background of resveratrol (including its origins, stability, and metabolism), the metabolic effects of resveratrol and its mechanisms of action, and a potential future role of dietary resveratrol in the lifestyle management of obesity.
Data sources: We performed a narrative review, based on relevant articles written in English from a Pubmed search, using the following search terms: "resveratrol", "obesity", "Diabetes Mellitus", and "insulin sensitivity". Results: Following its ingestion, resveratrol undergoes extensive metabolism. This includes conjugation (with sulfate and glucuronate) within enterocytes, hydrolyzation and reduction within the gut through the action of the microbiota (with the formation of metabolites such as dihydroresveratrol), and enterohepatic circulation via the bile.
Ex vivo studies on adipose tissue reveal that resveratrol inhibits adipogenesis and prevents the accumulation of triglycerides through effects on the expression of Peroxisome Proliferator-activated Receptor gamma (PPARgamma) and sirtuin 1, respectively. Furthermore, resveratrol induces anti-inflammatory effects, supported by data from animal-based studies. Limited data from human-based studies reveal that resveratrol improves insulin sensitivity and fasting glucose levels in patients with Type 2 Diabetes Mellitus and may improve inflammatory status in human obesity.
Although numerous mechanisms may underlie the metabolic benefits of resveratrol, evidence supports a role in its interaction with the gut microbiota and modulation of protein targets, including sirtuins and proteins related to nitric oxide, insulin, and nuclear hormone receptors (such as PPARgamma). Conclusions: Despite much interest, there remain important unanswered questions regarding its optimal dosage (and how this may differ between and within individuals), and possible benefits within the general population, including the potential for weight-loss and improved metabolic function. Future studies should properly address these important questions before we can advocate the widespread adoption of dietary resveratrol supplementation.
(Poly)phenols have anti-diabetic properties that are mediated through the regulation of the main biomarkers associated with type 2 diabetes mellitus (T2DM) (fasting plasma glucose (FPG), glycated hemoglobin (HbA1c), insulin resistance (IR)), as well as the modulation of other metabolic, inflammatory and oxidative stress pathways. A wide range of human and pre-clinical studies supports these effects for different plant products containing mixed (poly)phenols (e.g., berries, cocoa, tea) and for some single compounds (e.g., resveratrol). We went through some of the latest human intervention trials and pre-clinical studies looking at (poly)phenols against T2DM to update the current evidence and to examine the progress in this field to achieve consistent proof of the anti-diabetic benefits of these compounds. Overall, the reported effects remain small and highly variable, and the accumulated data are still limited and contradictory, as shown by recent meta-analyses. We found newly published studies with better experimental strategies, but there were also examples of studies that still need to be improved. Herein, we highlight some of the main aspects that still need to be considered in future studies and reinforce the messages that need to be taken on board to achieve consistent evidence of the anti-diabetic effects of (poly)phenols.