27 April 2023 In Phenolic compounds

Polyphenols are secondary plant metabolites synthesized during the development of the grape berry as a response to stress conditions. They are important constituents in red wines that contribute to the sensory properties and antioxidant activity of wines. Due to the development of highly sophisticated analytical devices, it is now possible to characterize the structure of highly polymerized polyphenols and obtain a full polyphenol profile of red wines. Red wine polyphenols include the ones present in grapes as well as new polyphenol products formed during the winemaking process.

Among them, the most important groups and their representatives are flavanols (catechin), stilbenes (trans-resveratrol), flavonols (quercetin) and hydroxybenzoic acids (gallic acid). It is known that polyphenols exhibit beneficial effects on human health, such as anti-inflammatory, anticarcinogenic and cardio-protective effects. Many studies have been conducted on the health effects of red wine polyphenols in cancer chemopreventive activities, neuroprotective effects and impact on cardiovascular diseases, gut microbiota in humans, etc. This review will provide major scientific findings on the impact of red wine polyphenols on human health as well as a review of polyphenols present in red wines and their main features.

27 April 2023 In Phenolic compounds

Polyphenols are secondary plant metabolites synthesized during the development of the grape berry as a response to stress conditions. They are important constituents in red wines that contribute to the sensory properties and antioxidant activity of wines. Due to the development of highly sophisticated analytical devices, it is now possible to characterize the structure of highly polymerized polyphenols and obtain a full polyphenol profile of red wines.

Red wine polyphenols include the ones present in grapes as well as new polyphenol products formed during the winemaking process. Among them, the most important groups and their representatives are flavanols (catechin), stilbenes (trans-resveratrol), flavonols (quercetin) and hydroxybenzoic acids (gallic acid). It is known that polyphenols exhibit beneficial effects on human health, such as anti-inflammatory, anticarcinogenic and cardio-protective effects.

Many studies have been conducted on the health effects of red wine polyphenols in cancer chemopreventive activities, neuroprotective effects and impact on cardiovascular diseases, gut microbiota in humans, etc. This review will provide major scientific findings on the impact of red wine polyphenols on human health as well as a review of polyphenols present in red wines and their main features.

31 March 2023 In Phenolic compounds

BACKGROUND: Gut microbiota profiles are closely related to cardiovascular diseases through mechanisms that include the reported deleterious effects of metabolites, such as trimethylamine N-oxide (TMAO), which have been studied as diagnostic and therapeutic targets. Moderate red wine (RW) consumption is reportedly cardioprotective, possibly by affecting the gut microbiota.

OBJECTIVES: To investigate the effects of RW consumption on the gut microbiota, plasma TMAO, and the plasma metabolome in men with documented coronary artery disease (CAD) using a multiomics assessment in a crossover trial. METHODS: We conducted a randomized, crossover, controlled trial involving 42 men (average age, 60 y) with documented CAD comparing 3-wk RW consumption (250 mL/d, 5 d/wk) with an equal period of alcohol abstention, both preceded by a 2-wk washout period.

The gut microbiota was analyzed via 16S rRNA high-throughput sequencing. Plasma TMAO was evaluated by LC-MS/MS. The plasma metabolome of 20 randomly selected participants was evaluated by ultra-high-performance LC-MS/MS. The effect of RW consumption was assessed by individual comparisons using paired tests during the abstention and RW periods.

RESULTS: Plasma TMAO did not differ between RW intervention and alcohol abstention, and TMAO concentrations showed low intraindividual concordance over time, with an intraclass correlation coefficient of 0.049 during the control period. After RW consumption, there was significant remodeling of the gut microbiota, with a difference in beta diversity and predominance of Parasutterella, Ruminococcaceae, several Bacteroides species, and Prevotella. Plasma metabolomic analysis revealed significant changes in metabolites after RW consumption, consistent with improved redox homeostasis.

CONCLUSIONS: Modulation of the gut microbiota may contribute to the putative cardiovascular benefits of moderate RW consumption. The low intraindividual concordance of TMAO presents challenges regarding its role as a cardiovascular risk biomarker at the individual level. This study was registered at clinical trials.gov as NCT03232099.

07 February 2023 In General Health

BACKGROUND: Gut microbiota profiles are closely related to cardiovascular diseases through mechanisms that include the reported deleterious effects of metabolites, such as trimethylamine N-oxide (TMAO), which have been studied as diagnostic and therapeutic targets. Moderate red wine (RW) consumption is reportedly cardioprotective, possibly by affecting the gut microbiota.

OBJECTIVES: To investigate the effects of RW consumption on the gut microbiota, plasma TMAO, and the plasma metabolome in men with documented coronary artery disease (CAD) using a multiomics assessment in a crossover trial. METHODS: We conducted a randomized, crossover, controlled trial involving 42 men (average age, 60 y) with documented CAD comparing 3-wk RW consumption (250 mL/d, 5 d/wk) with an equal period of alcohol abstention, both preceded by a 2-wk washout period. The gut microbiota was analyzed via 16S rRNA high-throughput sequencing. Plasma TMAO was evaluated by LC-MS/MS. The plasma metabolome of 20 randomly selected participants was evaluated by ultra-high-performance LC-MS/MS.

The effect of RW consumption was assessed by individual comparisons using paired tests during the abstention and RW periods. RESULTS: Plasma TMAO did not differ between RW intervention and alcohol abstention, and TMAO concentrations showed low intraindividual concordance over time, with an intraclass correlation coefficient of 0.049 during the control period.

After RW consumption, there was significant remodeling of the gut microbiota, with a difference in beta diversity and predominance of Parasutterella, Ruminococcaceae, several Bacteroides species, and Prevotella. Plasma metabolomic analysis revealed significant changes in metabolites after RW consumption, consistent with improved redox homeostasis. CONCLUSIONS: Modulation of the gut microbiota may contribute to the putative cardiovascular benefits of moderate RW consumption. The low intraindividual concordance of TMAO presents challenges regarding its role as a cardiovascular risk biomarker at the individual level. This study was registered at clinical trials.gov as NCT03232099.

Page 1 of 5

Contact us

We love your feedback. Get in touch with us.

  • Tel: +32 (0)2 230 99 70
  • Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Disclaimer

The authors have taken reasonable care in ensuring the accuracy of the information herein at the time of publication and are not responsible for any errors or omissions. Read more on our disclaimer and Privacy Policy.