22 March 2022 In Phenolic compounds

Dietary polyphenols including phenolic acids, flavonoids, catechins, tannins, lignans, stilbenes, and anthocyanidins are widely found in grains, cereals, pulses, vegetables, spices, fruits, chocolates, and beverages like fruit juices, tea, coffee and wine. In recent years, dietary polyphenols have gained significant interest among researchers due to their potential chemopreventive/protective functions in the maintenance of human health and diseases. It is believed that dietary polyphenols/flavonoids exert powerful antioxidant action for protection against reactive oxygen species (ROS)/cellular oxidative stress (OS) towards the prevention of OS-related pathological conditions or diseases.

Pre-clinical and clinical evidence strongly suggest that long term consumption of diets rich in polyphenols offer protection against the development of various chronic diseases such as neurodegenerative diseases, cardiovascular diseases (CVDs), cancer, diabetes, inflammatory disorders and infectious illness. Increased intake of foods containing polyphenols (for example, quercetin, epigallocatechin-3-gallate, resveratrol, cyanidin etc.) has been claimed to reduce the extent of a majority of chronic oxidative cellular damage, DNA damage, tissue inflammations, viral/bacterial infections, and neurodegenerative diseases.

It has been suggested that the antioxidant activity of dietary polyphenols plays a pivotal role in the prevention of OS-induced human diseases. In this narrative review, the biological/pharmacological significance of dietary polyphenols in the prevention of and/or protection against OS-induced major human diseases such as cancers, neurodegenerative diseases, CVDs, diabetes mellitus, cancer, inflammatory disorders and infectious diseases have been delineated.

This review specifically focuses a current understanding on the dietary sources of polyphenols and their protective effects including mechanisms of action against various major human diseases.

22 October 2021 In Cardiovascular System

We assessed, for the first time, to what extent the composition of the gut microbiome might explain the cross-sectional association of habitual flavonoid and flavonoid-rich food intake with systolic and diastolic blood pressure (BP) in a community-based sample (N=904) from Northern Germany. Gut microbiome composition was sequenced from 16S ribosomal RNA genes. Higher total flavonoid intakes and specifically the polymer subclass were associated with lower systolic BP (SBP; β T3-T1: −2.9% [95% CI, −5.1 to −0.7], P=0.01 and −3.7% [95% CI, −5.4 to −1.0], P=0.01). In food-based analyses, a higher intake of berries (SBP, β Q4-Q1: −2.9% [95% CI, −5.2 to −0.6], P=0.01; pulse pressure, −5.5% [95% CI, −9.6 to −1.2], P=0.01) and red wine (SBP, β Q4-Q1: −2.6% [95% CI, −4.8 to −0.3], P=0.03; pulse pressure, −6.1% [95% CI, −10.1 to −2.0], P<0.01) were associated with lower SBP and pulse pressure. There were no associations with diastolic BP. In food-based analyses, higher intakes of anthocyanin-rich berries and red wine were associated with higher alpha diversity (β Q4-Q1: 0.03 [95% CI, 0.0–0.1], P=0.04 and 0.1 [95% CI, 0.03–0.1], P<0.01). Higher intakes of berries and apples/pears were associated with a lower abundance of Parabacteroides (β Q4-Q1: −0.2 [95% CI, −0.4 to −0.1], P<0.01, Q=0.07 and −0.3 [95% CI, −0.4 to −0.1], P< 0.01, Q=0.04). Structural equation modeling of these novel data suggests that microbial factors explained 15.2% to the association between flavonoid-rich foods and clinically relevant lower SBP. Further research should focus on interindividual variability in the gut microbiome in mediating the cardiovascular effects of flavonoid-rich foods.

23 September 2021 In General Health

We assessed, for the first time, to what extent the composition of the gut microbiome might explain the cross-sectional association of habitual flavonoid and flavonoid-rich food intake with systolic and diastolic blood pressure (BP) in a community-based sample (N=904) from Northern Germany. Gut microbiome composition was sequenced from 16S ribosomal RNA genes. Higher total flavonoid intakes and specifically the polymer subclass were associated with lower systolic BP (SBP; β T3-T1: −2.9% [95% CI, −5.1 to −0.7], P=0.01 and −3.7% [95% CI, −5.4 to −1.0], P=0.01). In food-based analyses, a higher intake of berries (SBP, β Q4-Q1: −2.9% [95% CI, −5.2 to −0.6], P=0.01; pulse pressure, −5.5% [95% CI, −9.6 to −1.2], P=0.01) and red wine (SBP, β Q4-Q1: −2.6% [95% CI, −4.8 to −0.3], P=0.03; pulse pressure, −6.1% [95% CI, −10.1 to −2.0], P<0.01) were associated with lower SBP and pulse pressure. There were no associations with diastolic BP. In food-based analyses, higher intakes of anthocyanin-rich berries and red wine were associated with higher alpha diversity (β Q4-Q1: 0.03 [95% CI, 0.0–0.1], P=0.04 and 0.1 [95% CI, 0.03–0.1], P<0.01). Higher intakes of berries and apples/pears were associated with a lower abundance of Parabacteroides (β Q4-Q1: −0.2 [95% CI, −0.4 to −0.1], P<0.01, Q=0.07 and −0.3 [95% CI, −0.4 to −0.1], P< 0.01, Q=0.04). Structural equation modeling of these novel data suggests that microbial factors explained 15.2% to the association between flavonoid-rich foods and clinically relevant lower SBP. Further research should focus on interindividual variability in the gut microbiome in mediating the cardiovascular effects of flavonoid-rich foods.

28 June 2017 In General Health

Flavonoids are bioactive compounds found in foods such as tea, red wine, fruits and vegetables. Higher intakes of specific flavonoids, and flavonoid-rich foods, have been linked to reduced mortality from specific vascular diseases and cancers. However, the importance of flavonoid-rich foods, and flavonoids, in preventing all-cause mortality remains uncertain. As such, we examined the association of intake of flavonoid-rich foods and flavonoids with subsequent mortality among 93 145 young and middle-aged women in the Nurses' Health Study II. During 1 838 946 person-years of follow-up, 1808 participants died. When compared with non-consumers, frequent consumers of red wine, tea, peppers, blueberries and strawberries were at reduced risk of all-cause mortality (P<0.05), with the strongest associations observed for red wine and tea; multivariable-adjusted hazard ratios 0.60 (95 % CI 0.49, 0.74) and 0.73 (95 % CI 0.65, 0.83), respectively. Conversely, frequent grapefruit consumers were at increased risk of all-cause mortality, compared with their non-grapefruit consuming counterparts (P<0.05). When compared with those in the lowest consumption quintile, participants in the highest quintile of total-flavonoid intake were at reduced risk of all-cause mortality in the age-adjusted model; 0.81 (95 % CI 0.71, 0.93). However, this association was attenuated following multivariable adjustment; 0.92 (95 % CI 0.80, 1.06). Similar results were observed for consumption of flavan-3-ols, proanthocyanidins and anthocyanins. Flavonols, flavanones and flavones were not associated with all-cause mortality in any model. Despite null associations at the compound level and select foods, higher consumption of red wine, tea, peppers, blueberries and strawberries, was associated with reduced risk of total and cause-specific mortality. These findings support the rationale for making food-based dietary recommendations.

Page 1 of 6

Disclaimer

The authors have taken reasonable care in ensuring the accuracy of the information herein at the time of publication and are not responsible for any errors or omissions. Read more on our disclaimer and Privacy Policy.