Polyphenols is a major group of non-nutrients, considering their diversity, occurrence, and biological properties. Polyphenols play essential roles in the prevention of chronic diseases through the mitigation of inflammation, commonly referred to as meta-flammation. Inflammation is the most common feature of chronic diseases such as cancers, cardiovascular disorders, diabetes, and obesity. This aim of this review was to present a wide spectrum of literature data, including the current understanding of the role of polyphenols in the prevention and management of chronic diseases and their ability to interact with other food compounds in food systems. The publications cited are based on animal models, cohort studies, case controls, and feeding experiments. The significant effects of dietary polyphenols in cancers and cardiovascular diseases are evaluated. The interactive possibilities of dietary polyphenols with other dietary food compounds in food systems and their effects are also presented. However, despite several works, estimation of dietary intake is still inconclusive and a major challenge.
The common aldehyde dehydrogenase 2 (ALDH2) alcohol flushing variant known as ALDH2*2 affects ∼8% of the world's population. Even in heterozygous carriers, this missense variant leads to a severe loss of ALDH2 enzymatic activity and has been linked to an increased risk of coronary artery disease (CAD). Endothelial cell (EC) dysfunction plays a determining role in all stages of CAD pathogenesis, including early-onset CAD. However, the contribution of ALDH2*2 to EC dysfunction and its relation to CAD are not fully understood.
In a large genome-wide association study (GWAS) from Biobank Japan, ALDH2*2 was found to be one of the strongest single-nucleotide polymorphisms associated with CAD. Clinical assessment of endothelial function showed that human participants carrying ALDH2*2 exhibited impaired vasodilation after light alcohol drinking. Using human induced pluripotent stem cell-derived ECs (iPSC-ECs) and CRISPR-Cas9-corrected ALDH2*2 iPSC-ECs, we modeled ALDH2*2-induced EC dysfunction in vitro, demonstrating an increase in oxidative stress and inflammatory markers and a decrease in nitric oxide (NO) production and tube formation capacity, which was further exacerbated by ethanol exposure.
We subsequently found that sodium-glucose cotransporter 2 inhibitors (SGLT2i) such as empagliflozin mitigated ALDH2*2-associated EC dysfunction. Studies in ALDH2*2 knock-in mice further demonstrated that empagliflozin attenuated ALDH2*2-mediated vascular dysfunction in vivo. Mechanistically, empagliflozin inhibited Na(+)/H(+)-exchanger 1 (NHE-1) and activated AKT kinase and endothelial NO synthase (eNOS) pathways to ameliorate ALDH2*2-induced EC dysfunction. Together, our results suggest that ALDH2*2 induces EC dysfunction and that SGLT2i may potentially be used as a preventative measure against CAD for ALDH2*2 carriers.
Background: Resveratrol is a polyphenol chemical that naturally occurs in many plant-based dietary products, most notably, red wine. Discovered in 1939, widespread interest in the potential health benefits of resveratrol emerged in the 1970s in response to epidemiological data on the cardioprotective effects of wine. Objective: To explore the background of resveratrol (including its origins, stability, and metabolism), the metabolic effects of resveratrol and its mechanisms of action, and a potential future role of dietary resveratrol in the lifestyle management of obesity.
Data sources: We performed a narrative review, based on relevant articles written in English from a Pubmed search, using the following search terms: "resveratrol", "obesity", "Diabetes Mellitus", and "insulin sensitivity". Results: Following its ingestion, resveratrol undergoes extensive metabolism. This includes conjugation (with sulfate and glucuronate) within enterocytes, hydrolyzation and reduction within the gut through the action of the microbiota (with the formation of metabolites such as dihydroresveratrol), and enterohepatic circulation via the bile.
Ex vivo studies on adipose tissue reveal that resveratrol inhibits adipogenesis and prevents the accumulation of triglycerides through effects on the expression of Peroxisome Proliferator-activated Receptor gamma (PPARgamma) and sirtuin 1, respectively. Furthermore, resveratrol induces anti-inflammatory effects, supported by data from animal-based studies. Limited data from human-based studies reveal that resveratrol improves insulin sensitivity and fasting glucose levels in patients with Type 2 Diabetes Mellitus and may improve inflammatory status in human obesity.
Although numerous mechanisms may underlie the metabolic benefits of resveratrol, evidence supports a role in its interaction with the gut microbiota and modulation of protein targets, including sirtuins and proteins related to nitric oxide, insulin, and nuclear hormone receptors (such as PPARgamma). Conclusions: Despite much interest, there remain important unanswered questions regarding its optimal dosage (and how this may differ between and within individuals), and possible benefits within the general population, including the potential for weight-loss and improved metabolic function. Future studies should properly address these important questions before we can advocate the widespread adoption of dietary resveratrol supplementation.
There is evidence that diet and nutrition are modifiable risk factors for several cancers, but associations may be flawed due to inherent biases. Nutritional epidemiology studies have largely relied on a single assessment of diet using food frequency questionnaires. We conduct an umbrella review of meta-analyses of observational studies to evaluate the strength and validity of the evidence for the association between food/nutrient intake and risk of developing or dying from 11 primary cancers. It is estimated that only few single food/nutrient and cancer associations are supported by strong or highly suggestive meta-analytic evidence, and future similar research is unlikely to change this evidence. Alcohol consumption is positively associated with risk of postmenopausal breast, colorectal, esophageal, head & neck and liver cancer. Consumption of dairy products, milk, calcium and wholegrains are inversely associated with colorectal cancer risk. Coffee consumption is inversely associated with risk of liver cancer and skin basal cell carcinoma.