25 August 2020 In Phenolic compounds

Over the last few decades, polyphenols, and flavonoids in particular, have attracted the interest of researchers, as they have been associated with the health-promoting effects derived from diets rich in vegetables and fruits, including moderate wine consumption.

Recent scientific evidence suggests that wine polyphenols exert their effects through interactions with the gut microbiota, as they seem to modulate microbiota and, at the same time, are metabolized by intestinal bacteria into specific bioavailable metabolites. Microbial metabolites are better absorbed than their precursors and may be responsible for positive health activities in the digestive system (local effects) and, after being absorbed, in tissues and organs (systemic effects). Differences in gut microbiota composition and functionality among individuals can affect polyphenol activity and, therefore, their health effects.

The aim of this review is to integrate the understanding of the metabolism and mechanisms of action of wine polyphenols at both local and systemic levels, underlining their impact on the gut microbiome and the inter-individual variability associated with polyphenols' metabolism and further physiological effects. The advent of promising dietary approaches linked to wine polyphenols beyond the gut microbiota community and metabolism are also discussed.

25 August 2020 In Phenolic compounds

Atrial fibrillation (AF) is a common cardiac arrhythmia that is associated with increased risk for cardiovascular disease and overall mortality. Excessive alcohol intake is a well-known risk factor for AF, but this correlation is less clear with light and moderate drinking.

Besides, low doses of red wine may acutely prolong repolarization and slow cardiac conduction. Resveratrol, a bioactive polyphenol found in grapes and red wine, has been linked to antiarrhythmic properties and may act as an inhibitor of both intracellular calcium release and pathological signaling cascades in AF, eliminating calcium overload and preserving the cardiomyocyte contractile function. However, there are still no clinical trials at all that prove that resveratrol supplementation leads to improved outcomes.

Besides, no observational study supports a beneficial effect of light or moderate alcohol intake and a lower risk of AF. The purpose of this review is to briefly describe possible beneficial effects of red wine and resveratrol in AF, and also present studies conducted in humans regarding chronic red wine consumption, resveratrol, and AF.

25 August 2020 In Phenolic compounds

BACKGROUND & AIMS: Epidemiological data suggest that moderate red wine consumption reduces cardiovascular mortality and the incidence of diabetes. However, whether these effects are due to ethanol or to non-alcoholic components of red wine still remains unknown. The aim of the present study was to compare the effects of moderate consumption of red wine, dealcoholized red wine, and gin on glucose metabolism and the lipid profile.

METHODS: Sixty-seven men at high cardiovascular risk were randomized in a crossover trial. After a run-in period, all received each of red wine (30 g alcohol/d), the equivalent amount of dealcoholized red wine, and gin (30 g alcohol/d) for 4 week periods, in a randomized order. Fasting plasma glucose and insulin, homeostasis model assessment of insulin resistance (HOMA-IR), plasma lipoproteins, apolipoproteins and adipokines were determined at baseline and after each intervention.

RESULTS: Fasting glucose remained constant throughout the study, while mean adjusted plasma insulin and HOMA-IR decreased after red wine and dealcoholized red wine. HDL cholesterol, Apolipoprotein A-I and A-II increased after red wine and gin. Lipoprotein(a) decreased after the red wine intervention.

CONCLUSIONS: These results support a beneficial effect of the non-alcoholic fraction of red wine (mainly polyphenols) on insulin resistance, conferring greater protective effects on cardiovascular disease to red wine than other alcoholic beverages. www.isrctn.org: ISRCTN88720134.

26 June 2020 In Phenolic compounds

Over the last few decades, polyphenols, and flavonoids in particular, have attracted the interest of researchers, as they have been associated with the health-promoting effects derived from diets rich in vegetables and fruits, including moderate wine consumption. Recent scientific evidence suggests that wine polyphenols exert their effects through interactions with the gut microbiota, as they seem to modulate microbiota and, at the same time, are metabolized by intestinal bacteria into specific bioavailable metabolites.

Microbial metabolites are better absorbed than their precursors and may be responsible for positive health activities in the digestive system (local effects) and, after being absorbed, in tissues and organs (systemic effects). Differences in gut microbiota composition and functionality among individuals can affect polyphenol activity and, therefore, their health effects.

The aim of this review is to integrate the understanding of the metabolism and mechanisms of action of wine polyphenols at both local and systemic levels, underlining their impact on the gut microbiome and the inter-individual variability associated with polyphenols' metabolism and further physiological effects. The advent of promising dietary approaches linked to wine polyphenols beyond the gut microbiota community and metabolism are also discussed.

Contact us

We love your feedback. Get in touch with us.

  • Tel: +32 (0)2 230 99 70
  • Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Disclaimer

The authors have taken reasonable care in ensuring the accuracy of the information herein at the time of publication and are not responsible for any errors or omissions. Read more on our disclaimer and Privacy Policy.